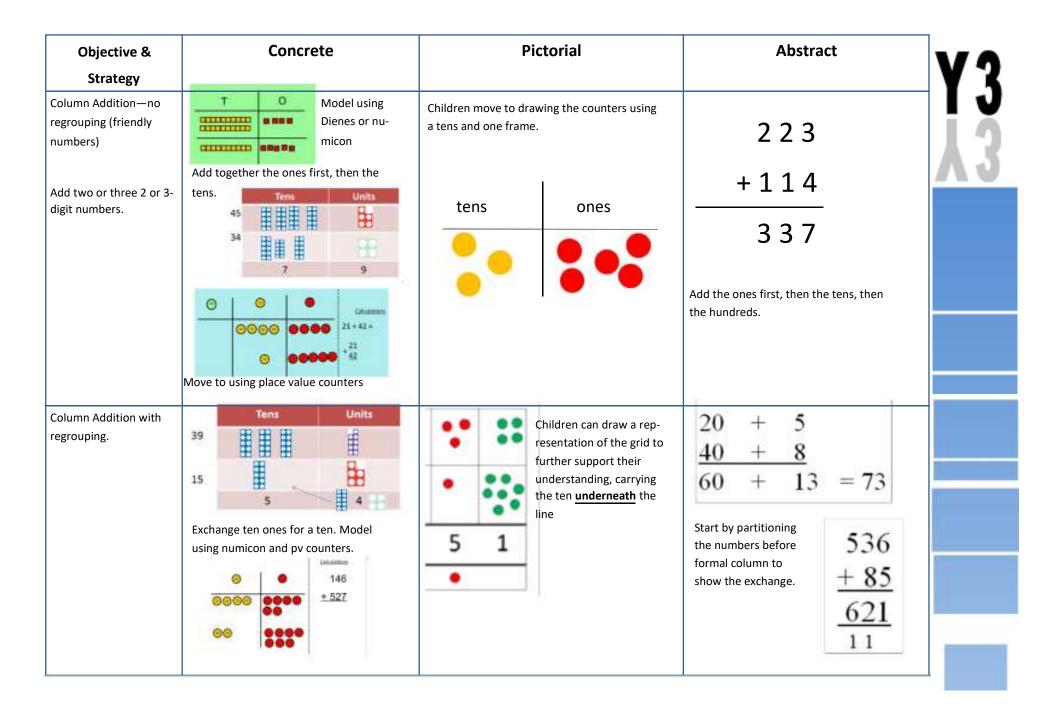
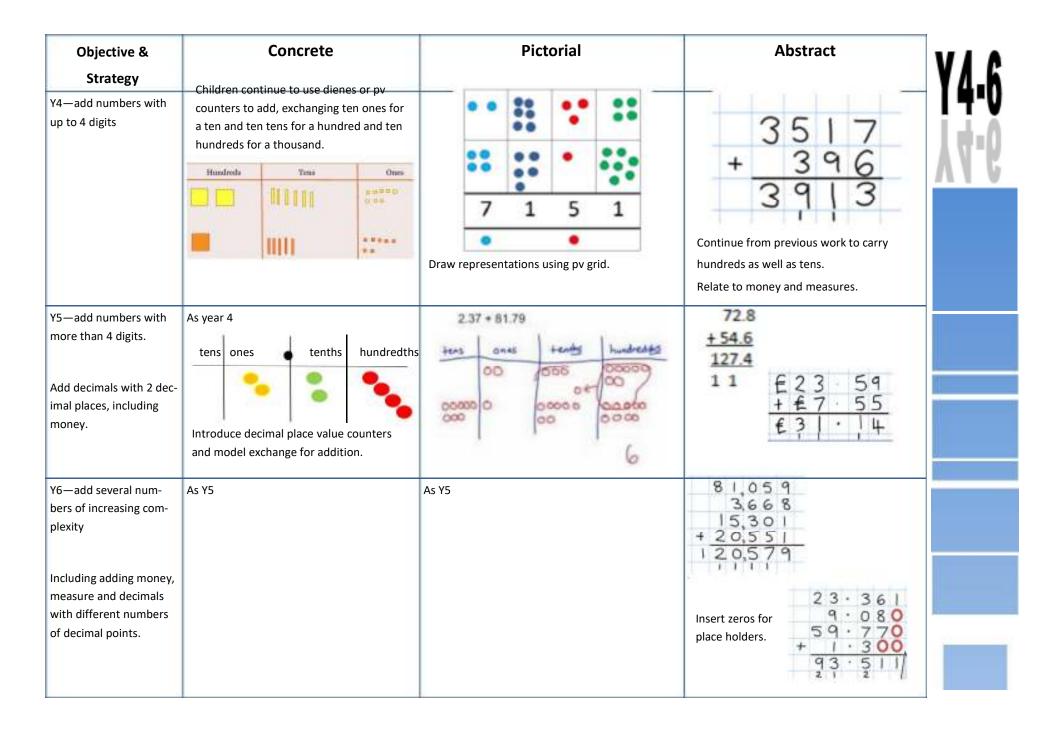


Ashton West End Primary Academy Calculation Policy






This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with further material added.


Maths Subject Leaders: K.Pizuti and S.Taylor September 2019

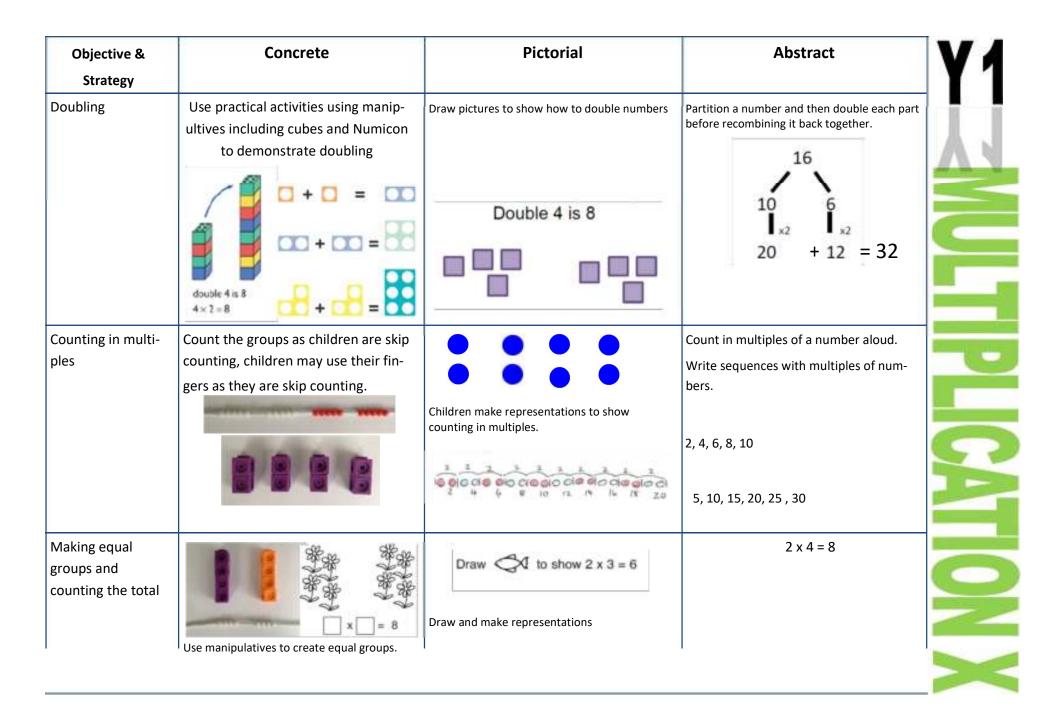
| <b>Objective &amp; Strategy</b>                                                       | Concrete                                                                                                                   | Pictorial                                                                                                                    | Abstract                                                                                                               | V |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---|
| Combining two<br>parts to make a<br>whole: part- whole<br>model                       | Use part part whole model.<br>Use cubes to add two numbers together as a group or<br>in a bar.                             | Use pictures to<br>add two num-<br>bers together<br>as a group or in<br>a bar.                                               | 4 + 3 = 7<br>Use the part-part<br>10= 6 + 4 whole diagram as<br>shown above to move<br>into the abstract.              |   |
| Starting at the big-<br>ger number and<br>counting on                                 | Start with the larger number on the bead<br>string and then count on to the smaller num-<br>ber 1 by 1 to find the answer. | 12 + 5 = 17<br>Start at the larger number on the number<br>line and count on in ones or in one jump to<br>find the answer.   | 5 + 12 = 17<br>Place the larger number in your head and<br>count on the smaller number to find your<br>answer.         |   |
| Regrouping to make<br>10.<br>This is an essential skill for<br>column addition later. | 6 + 5 = 11<br>Start with the<br>bigger number<br>and use the<br>smaller number<br>to make 10.<br>Use ten frames.           | Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10.<br>9+5=14 | 7 + 4= 11<br>If I am at seven, how many more do I need to<br>make 10. How many more do I add on now?                   |   |
| Represent & use<br>number bonds and<br>related subtraction<br>facts within 20         | 2 more than 5.                                                                                                             |                                                                                                                              | Emphasis should be on the language<br>'1 more than 5 is equal to 6.'<br>'2 more than 5 is 7.'<br>'8 is 3 more than 5.' |   |

| Objective &<br>Strategy                      | Concrete                                                                          | Pictorial                                                                                       | Abstract                                                             |
|----------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Adding multiples of                          | 50= 30 = 20<br>Model using dienes and bead strings                                | Use representations for base ten.                                                               | 20 + 30 = 50<br>70 = 50 + 20<br>$40 + \Box = 60$                     |
| Use known number<br>facts<br>Part part whole | 20<br>brindform<br>Children ex-<br>plore ways of<br>making num-<br>bers within 20 | 20<br>                                                                                          | □ + 1 = 16 16 - 1 = □<br>1 + □ = 16 16 - □ = 1                       |
| Jsing known facts                            |                                                                                   | $\begin{array}{c} \vdots & + \vdots & = \vdots \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$ | 3 + 4 = 7<br>leads to<br>30 + 40 = 70<br>leads to<br>300 + 400 = 700 |
| Bar model                                    | <b>3</b> + 4 = 7                                                                  | 7 + 3 = 10                                                                                      | <b>23 25</b><br>23 + 25 = 48                                         |

| Objective &<br>Strategy            | Concrete                                                                                          | Pictorial                                                                                                                      | Abstract                                                                                           | ٧٩ |
|------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----|
| Add a two digit<br>number and ones | 17 + 5 = 22Use ten frame to<br>make 'magic tenChildren explore the pattern.17 + 5 = 2227 + 5 = 32 | Use part<br>part whole<br>and number<br>line to<br>model.<br>17 + 5 = 22<br>3 (2)<br>16 + 7<br>16 + 7<br>16 + 7<br>16 + 20 (2) | 17 + 5 = 22 Explore related facts $17 + 5 = 22$ $5 + 17 = 22$ $22 - 17 = 5$ $17 - 5$ $22 - 5 = 17$ | λS |
| Add a 2 digit num-<br>ber and tens | $ \begin{array}{c}                                     $                                          | 27 + 30<br>+10 +10 +10<br>27 37 47 57                                                                                          | 27 + 10 = 37<br>27 + 20 = 47<br>27 + □ = 57                                                        |    |
| Add two 2-digit<br>numbers         | Model using dienes , place value counters and numicon                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                           | 25 + 47 $20 + 5$ $40 + 7$ $20 + 40 = 60$ $5 + 7 = 12$ $60 + 12 = 72$                               |    |
| Add three 1-digit<br>numbers       | Combine to make 10 first if possible, or<br>bridge 10 then add third digit                        | Regroup and draw representation.<br>= 15                                                                                       | 4 + 7 + 6 = 10 + 7 $= 17$ Combine the two numbers that make/bridge ten then add on the third.      |    |



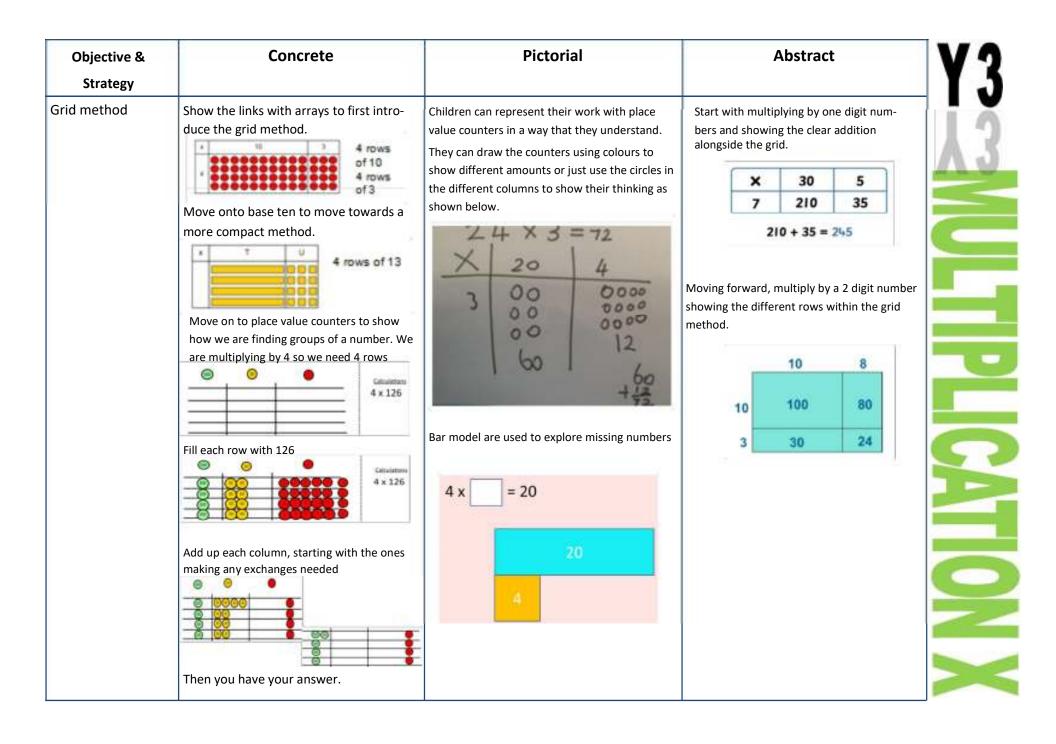


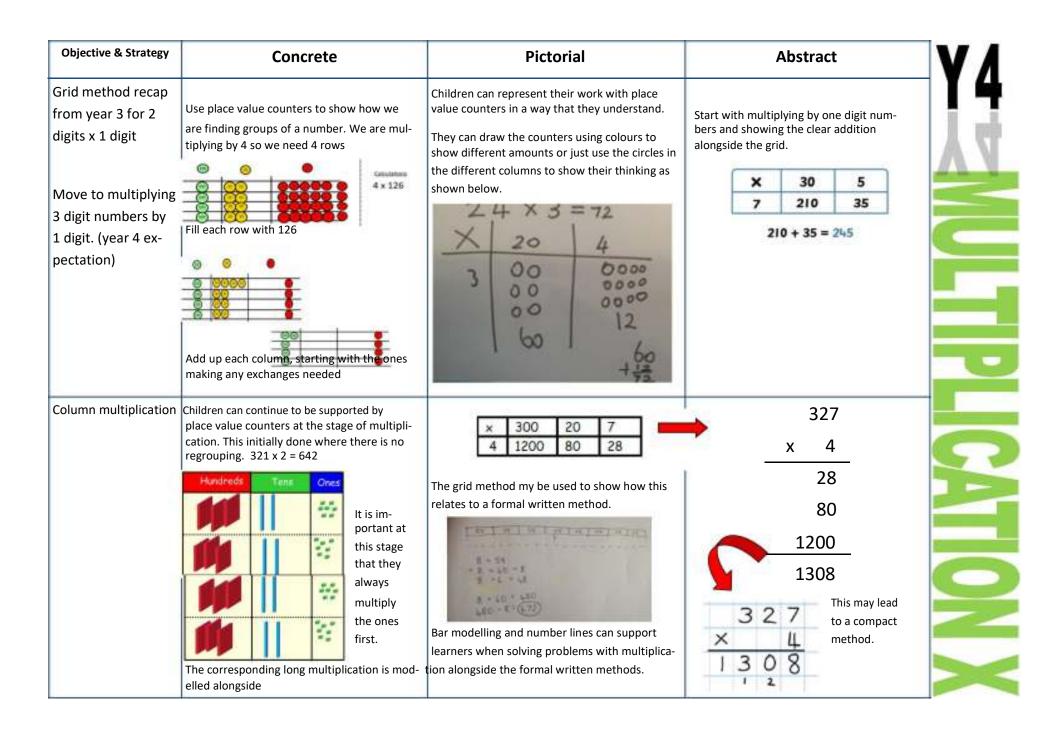

| Objective &<br>Strategy | Concrete                                                                                        | Pictorial                                                                | Abstract                                                                                   | ٧ł |
|-------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----|
| Taking away<br>ones.    | Use physical objects, counters , cubes etc<br>to show how objects can be taken away.<br>6-4 = 2 |                                                                          | 7—4 = 3                                                                                    |    |
|                         | 4-2=2                                                                                           | 15 - 3 = 12<br>Cross out drawn objects to show what has been taken away. | 16—9 = 7                                                                                   | S  |
| Counting back           | Move objects away from the group, counting backwards.                                           | 5 - 3 = 2                                                                | Put 13 in your head, count back 4. What number<br>are you at?                              | 8  |
|                         | Move the beads<br>along the bead<br>string as you count<br>backwards.                           | Count back in ones using a number line.                                  |                                                                                            | 3  |
| Find the<br>Difference  | Compare objects and amounts<br>7 'Seven is 3 more than four'<br>4<br>T am 2 years older than my | Count on using a number line to find the difference.                     | Hannah has12 sweets and her sister has 5. How many more does Hannah have than her sister.? | 9  |
|                         | sister<br>Shanch<br>Shanch<br>Stand<br>Lay objects to represent bar model.                      | +8<br>+6<br>1 1 2 3 4 5 6 7 8 9 10 11 12                                 |                                                                                            | 2  |

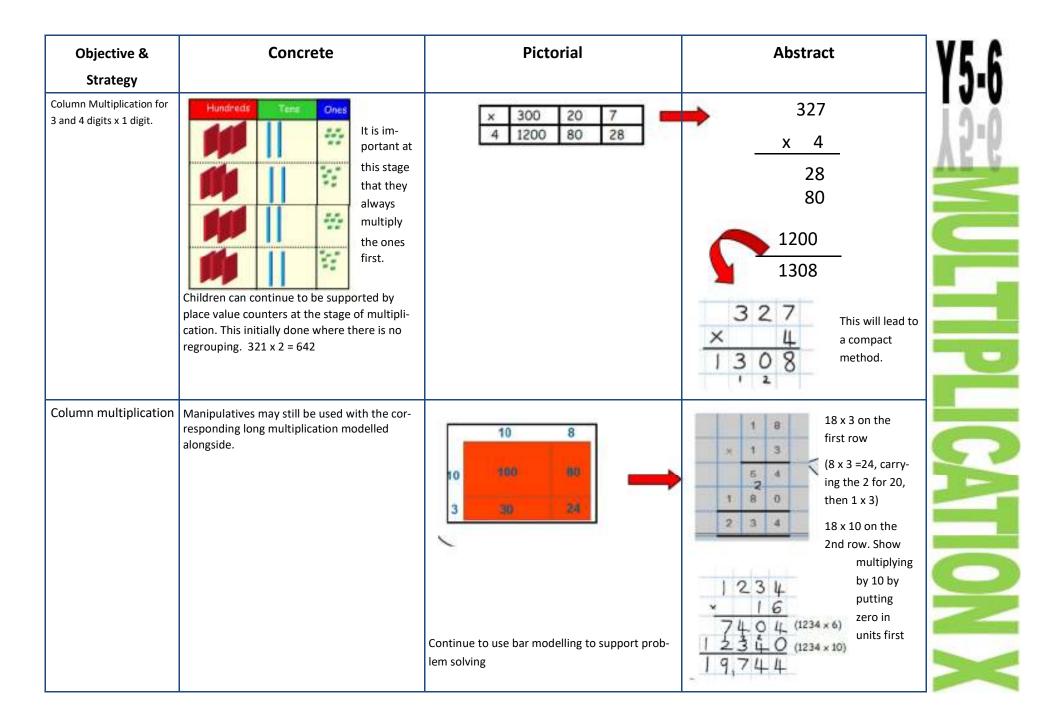
| Objective &<br>Strategy                                                                                     | Concrete                                                                                                                              | Pictorial                                       | Abstract                                                                          |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------|
| Represent and use<br>number bonds and<br>related subtraction<br>facts within 20<br>Part Part Whole<br>model | Link to addition. Use<br>PPW model to model<br>the inverse.<br>If 10 is the whole and 6 is one of the arts,<br>what s the other part? |                                                 | Move to using numbers within the part whole model.                                |
| Make 10                                                                                                     | 10-6 = 4<br>14-9<br>Make 14 on the ten frame. Take 4 away<br>to make ten, then take one more away so                                  | Use pictorial representations to show the part. | 16—8<br>How many do we take off first to get to<br>10? How many left to take off? |
| Bar model                                                                                                   | that you have taken 5.<br>5-2 = 3                                                                                                     | <b>XXXXXXXXXXX</b>                              | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                            |

| <b>Objective &amp; Strategy</b>                                                                                            | Concrete                                                                                                             | Pictorial                                                                                                             | Abstract   |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------|
| Regroup a ten into<br>ten ones                                                                                             | Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'                               | 20 - 4 =                                                                                                              | 20—4 = 16  |
| Partitioning to sub-<br>tract without re-<br>grouping.<br>'Friendly numbers'                                               | 34—13 = 21<br>Use Dienes to<br>show how to par-<br>tition the number<br>when subtracting<br>without regroup-<br>ing. | Children draw representations of Dienes and<br>cross off.<br>$ \begin{array}{c}                                     $ | 43—21 = 22 |
| Make ten strategy<br>Progression should be<br>crossing one ten, crossing<br>more than one ten, cross-<br>ing the hundreds. | 34-28<br>Use a bead bar or bead strings to model<br>counting to next ten and the rest.                               | Use a number line to count on to next ten<br>and then the rest.                                                       | 93—76 = 17 |
|                                                                                                                            |                                                                                                                      |                                                                                                                       |            |

| Objective &<br>Strategy                                        | Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pictorial                                                                          | Abstract                                                                                                                                     | V2    |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Column subtraction<br>without regrouping<br>(friendly numbers) | 47—32<br>Use base 10 or Numicon to model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Darw representations to support under-<br>standing                                 | $47-24=23$ $-\frac{20+4}{20+3}$ Intermediate step may be needed to lead to clear subtraction under- standing. $32$                           |       |
| Column subtraction<br>with regrouping                          | Tens       Units         Image: Constraint of the second secon | 45<br>76<br>Tens lones<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16 | 836-254*582       Begin by partitioning into pv columns         200 50 4       Good 20         728-5#2-144       Then move to formal method. | BTRAC |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                                                                                                                                              |       |


| Objective &<br>Strategy                                                                                                                                                                          | Concrete  | Pictorial                                                      | Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VIC    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Subtracting tens<br>and ones<br>Year 4 subtract with<br>up to 4 digits.<br>Introduce decimal subtrac-<br>tion through context of<br>money                                                        | 234 - 179 | Children to draw pv counters and show their<br>exchange—see Y3 | 2 X 5 4<br>- 1 5 6 2<br>1 1 9 2<br>Use the phrase 'take and make' for ex-<br>change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| Year 5- Subtract<br>with at least 4 dig-<br>its, including money<br>and measures.<br>Subtract with decimal<br>values, including mixtures<br>of integers and decimals<br>and aligning the decimal | As Year 4 | Children to draw pv counters and show their exchange—see Y3    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TRAC   |
| Year 6—Subtract<br>with increasingly<br>large and more<br>complex numbers<br>and decimal values.                                                                                                 |           |                                                                | $\frac{3}{6}, \frac{3}{6}, \frac{3}{6}, \frac{3}{6}, \frac{9}{4}, \frac{9}{4}, \frac{9}{4}, \frac{9}{6}, \frac{9}{7}, \frac{9}{5}, \frac{1}{7}, \frac{9}{7}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{5}, \frac{3}{7}, \frac{1}{7}, \frac{9}{7}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{5}, \frac{3}{7}, \frac{1}{7}, \frac{9}{7}, \frac$ | TION - |



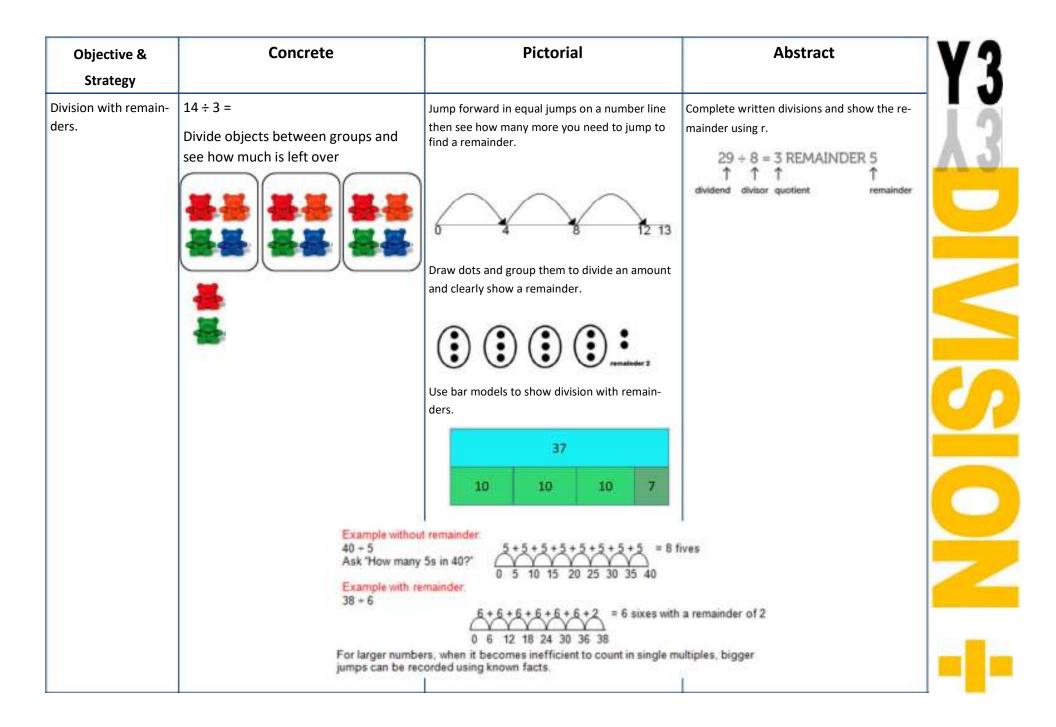


| <b>Objective &amp;</b>    | Concrete                                                                              | Pictorial                                                                                                                             | Abstract                                                      |
|---------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Strategy                  |                                                                                       |                                                                                                                                       |                                                               |
| Repeated addition         | Use different objects to add equal groups                                             | Use pictorial including number lines to solve<br>problem&ere are 3 sweets in one bag.<br>How many sweets are in 5 bags<br>altogether? | Write addition sentences to describe objects<br>and pictures. |
| Understanding ar-<br>rays | Use objects laid out in arrays to find the an-<br>swers to 2 lots 5, 3 lots of 2 etc. | Draw representations of arrays to show under-<br>standing                                                                             | 3 x 2 = 6<br>2 x 5 = 10                                       |

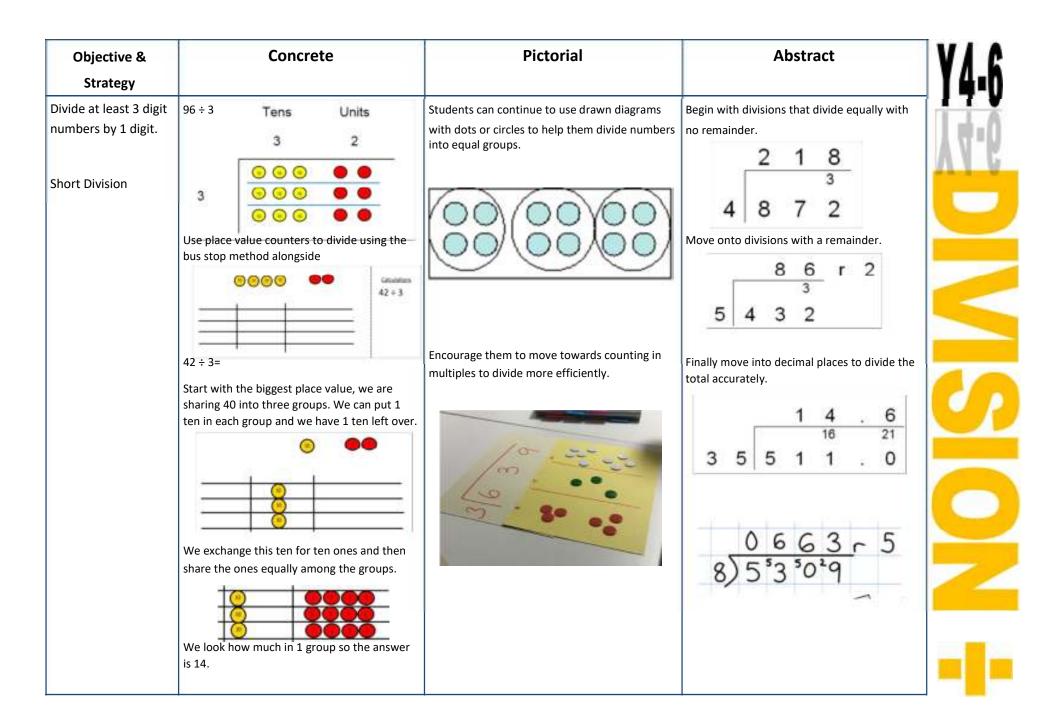
| Objective &<br>Strategy                                                       | Concrete                                                                                                                                                                   | Pictorial                                                                                                            | Abstract                                                                                                                                                                      |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Doubling                                                                      | Model doubling using dienes and PV counters.                                                                                                                               | Draw pictures and representations to show how to double numbers                                                      | Partition a number and then double<br>each part before recombining it back<br>together.<br>16<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                 |
| Counting in multi-<br>ples of 2, 3, 4, 5, 10<br>from 0<br>(repeated addition) | Count the groups as children are skip<br>counting, children may use their fin-<br>gers as they are skip counting. Use bar<br>models.<br>5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 = 40 | Number lines, counting sticks and bar<br>models should be used to show repre-<br>sentation of counting in multiples. | Count in multiples of a number aloud.<br>Write sequences with multiples of numbers.<br>0, 2, 4, 6, 8, 10<br>0, 3, 6, 9, 12, 15<br>0, 5, 10, 15, 20, 25, 30<br>$4 \times 3 = $ |

| Objective &<br>Strategy                                                                                                           | Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pictorial                                                                                                                                                                                           | Abstract                                                                                                                                                                                                         | Y |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Multiplication is<br>commutative                                                                                                  | Create arrays using counters and cubes and Numicon.         Description         < | Use representations of arrays to show different calculations and explore commutativity.                                                                                                             | 12 = $3 \times 4$<br>12 = $4 \times 3$<br>Use an array to write<br>multiplication sentences and<br>reinforce repeated addition.<br>00000<br>5 + 5 + 5 = 15<br>3 + 3 + 3 + 3 + 3 = 15<br>5 x 3 = 15<br>3 x 5 = 15 |   |
| Using the Inverse<br>This should be<br>taught alongside<br>division, so pupils<br>learn how they<br>work alongside<br>each other. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{vmatrix} 4 & 2 \\ \hline 4 & 2 \\ \hline \times & = \\ \hline \times & = \\ \hline \times & = \\ \hline \div & = \\ \end{vmatrix}$ | $2 \times 4 = 8$<br>$4 \times 2 = 8$<br>$8 \div 2 = 4$<br>$8 \div 4 = 2$<br>$8 = 2 \times 4$<br>$8 = 4 \times 2$<br>$2 = 8 \div 4$<br>$4 = 8 \div 2$<br>Show all 8 related fact family sentences.                |   |









| Objective &                                                                        | Concrete | Pictorial | Abstract                                                                                                                            |
|------------------------------------------------------------------------------------|----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------|
| Strategy<br>Multiplying decimals<br>up to 2 decimal plac-<br>es by a single digit. |          |           | Remind children that the single digit belongs<br>in the units column. Line up the decimal<br>points in the question and the answer. |
|                                                                                    |          |           | 25.52                                                                                                                               |
|                                                                                    |          |           |                                                                                                                                     |
|                                                                                    |          |           |                                                                                                                                     |

| Objective &                                                                              | Concrete                                           | Pictorial                                                                                                                                           | Abstract                                | V٩ |
|------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----|
| Objective &       Strategy       Division as sharing       Use Gordon ITPs for modelling | <section-header></section-header>                  | Pictorial<br>Children use pictures or shapes to share quanti-<br>ties.<br>Shared between 2 is 4<br>Sharing:<br>Sharing:<br>12 shared between 3 is 4 | Abstract<br>12 shared between 3 is<br>4 |    |
|                                                                                          | ave 10 cubes, can you share them equally in roups? |                                                                                                                                                     |                                         |    |

| Objective &<br>Strategy | Concrete                                                                                                              | Pictorial                                                                                                              | Abstract                                                              | Y |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---|
| Division as sharing     | I have 10 cubes, can you share them equally in 2 groups?                                                              | Children use pictures or shapes to share quanti-<br>ties.<br>$\begin{array}{c}  & & & & & & & & & & & & & & & & & & &$ | 12 ÷ 3 = 4                                                            |   |
| Division as grouping    | Divide quantities into equal groups.<br>Use cubes, counters, objects or place value<br>counters to aid understanding. | Use number lines for grouping                                                                                          | 28 ÷ 7 = 4<br>Divide 28 into 7 groups. How many are in<br>each group? |   |

| Objective &<br>Strategy | Concrete                                                                                                                                                                                       | Pictorial                                                                                                      | Abstract                                                                                                                                                                                                                    |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Division as grouping    | Use cubes, counters, objects or place value<br>counters to aid understanding.<br>24 divided into groups of $6 = 4$<br>96 + 3 = 32                                                              | Continue to use bar modelling to aid solving division problems.<br>20<br>20 $\pm 5 = ?$<br>5 x ? = 20          | How many groups of 6 in<br>24?<br>24 ÷ 6 = 4                                                                                                                                                                                |
| Division with arrays    | Link division to multiplication by creating an array and thinking about the number sentences that can be created.<br>Eg $15 \div 3 = 5$ $5 \times 3 = 15$<br>$15 \div 5 = 3$ $3 \times 5 = 15$ | Draw an array and use lines to split the array<br>into groups to make multiplication and division<br>sentences | Find the inverse of multiplication and division<br>sentences by creating eight linking number<br>sentences.<br>7 x 4 = 28<br>4 x 7 = 28<br>28 ÷ 7 = 4<br>28 ÷ 4 = 7<br>28 = 7 x 4<br>28 = 4 x 7<br>4 = 28 ÷ 7<br>7 = 28 ÷ 4 |

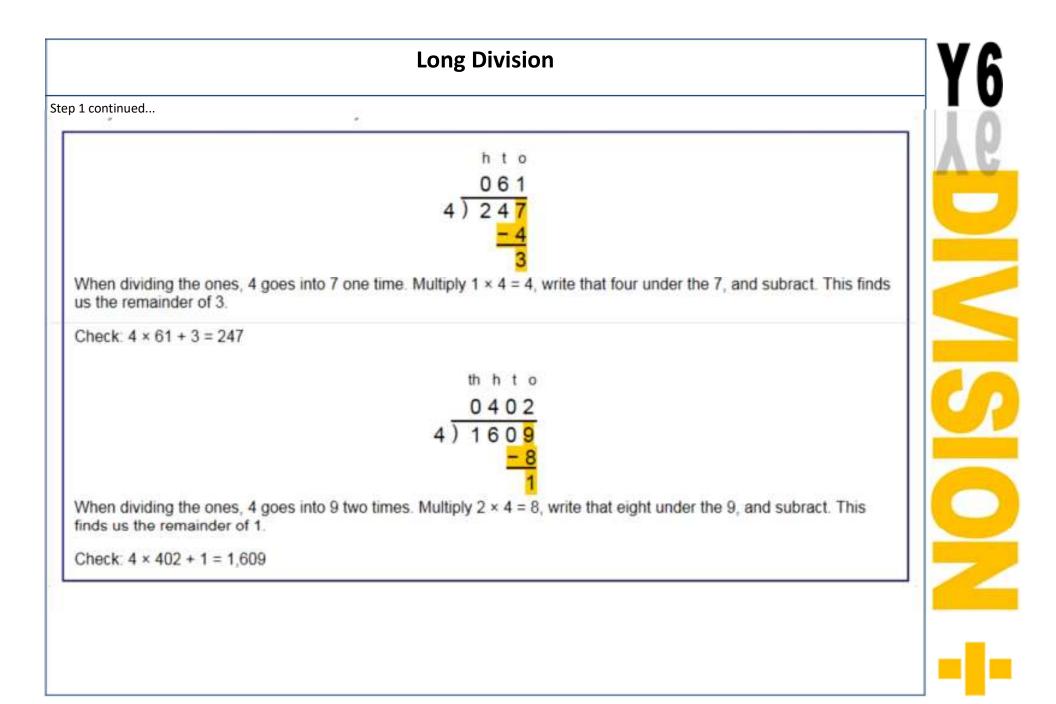




## **Long Division**

Step 1—a remainder in the ones

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).


4 goes into 16 four times.

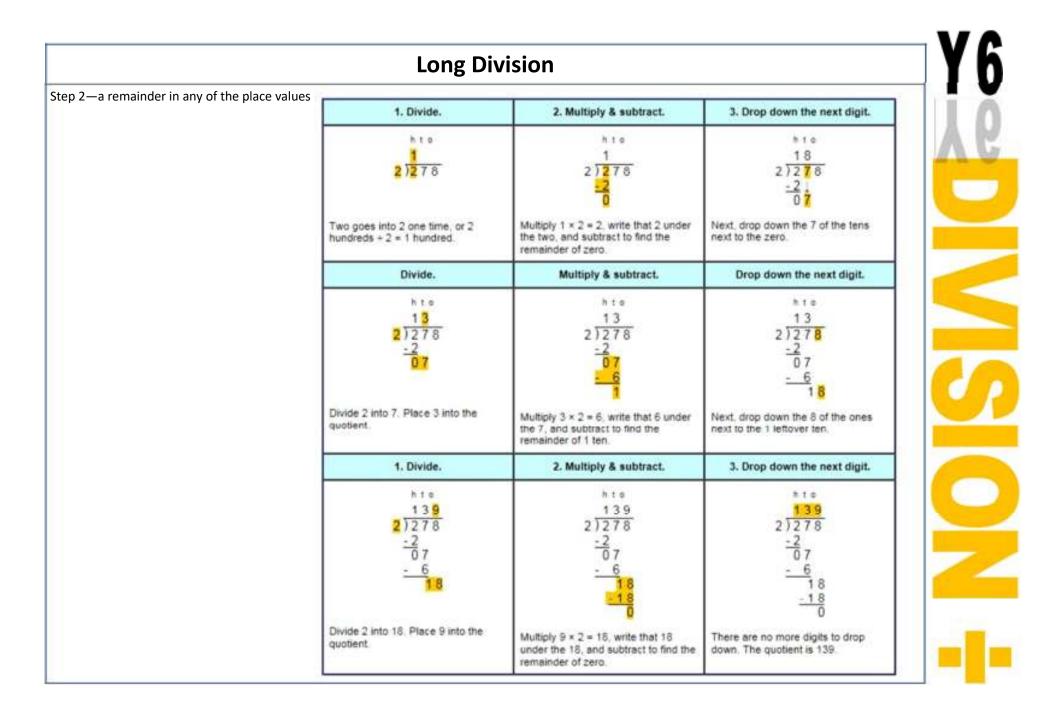
4 goes into 5 once, leaving a remainder of 1.



8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds (3,200).

8 goes into 32 four times (3,200 ÷ 8 = 400) 8 goes into 0 zero times (tens). 8 goes into 7 zero times, and leaves a remainder of 7.




## Long Division

Step 2—a remainder in the tens

| 1. Divide.                                                                              | 2. Multiply & subtract.                                                                                              | 3. Drop down the next digit.                                                                                                         |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| t o                                                                                     | t o<br>2                                                                                                             | t o<br>29                                                                                                                            |
| 2)58                                                                                    | 2)58                                                                                                                 | 2)58                                                                                                                                 |
| Two goes into 5 two times, or 5 tens<br>+ 2 = 2 whole tens but there is a<br>remainder! | 1<br>To find it, multiply 2 × 2 = 4, write that<br>4 under the five, and subtract to find<br>the remainder of 1 ten. | 1 8<br>Next, drop down the 8 of the ones<br>next to the leftover 1 ten. You<br>combine the remainder ten with 8<br>ones, and get 18. |

| 1. Divide.                                      | 2. Multiply & subtract.                                           | 3. Drop down the next digit.                                                                   |  |
|-------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| t o                                             | t o                                                               | to                                                                                             |  |
| 29                                              | 29                                                                | 29                                                                                             |  |
| -4                                              | 2)58                                                              | 2)58                                                                                           |  |
| 18                                              | 18                                                                | 18                                                                                             |  |
|                                                 | - 1 8                                                             | -18                                                                                            |  |
| Divide 2 into 18. Place 9 into the<br>quotient. | Multiply 9 × 2 = 18, write that 18<br>under the 18, and subtract. | The division is over since there are<br>no more digits in the dividend. The<br>quotient is 29. |  |

**Y**6

