

Ashton West End Primary Academy

KS1 and KS2 Calculation Policy 2021-2022

September 2021

This calculation policy reflects the methods taught pictorially, concretely and abstractly to the maths National Curriculum objectives (2014). Teachers should use this to help with their planning, as well as guiding children to build and develop their mathematical skills and methods.

Due to missed learning throughout the Covid-19 crisis of lockdowns and isolations; Ashton West End Primary Academy's staff scrutinise their maths planning to help plug in any missed learning. Throughout 2020-2021, teachers were given extra maths learning time to plug in gaps based on learning evidence from the children in assessments and lessons. Teachers were also given mandatory concepts to plug into the children before leaving their previous class to help them have prior learning knowledge in their current class.

Teachers should refer to these methods in the calculation policy and apply them to the preferred year group. Teachers may need to refer to the previous year group to help consolidate learning. This will help to ensure children are being taught these efficient calculation methods to achieve the National Curriculum maths objectives.

Objective and Strategy	Concrete	Pictorial	Abstract
Combing two parts to make a whole: partwhole model	Use part part whole models. Use cubes to add two numbers together as a group or in a bar.	Using pictures to add two numbers together as a group or in a bar. There are three full glasses and two empty glasses. We can write this as three plus twa' Cherry representation: 2 There are two empty glasses and three full glasses. We can write this as two plus three.' $2+3$	Use the part-part-whole diagram to move into the abstract. $4+3=7$ (4 is a part, 3 is a part, 7 is a whole) $\begin{array}{lr} 2+3=5 \\ 5=3+2 \\ 2+\square=5 \\ 2+3=\square & 3+2=5 \\ 2=2+3 \\ \square+3=5 \end{array}$ Bar models used to show relationship between addition and subtraction. \square \square $=8+3$ $14-6=$ \square
Starting at the bigger number and counting on.	Counting on using number lines using concrete resources. Start with the larger number on the bead string and the count on to find the smaller number, 1 by 1 , to find the answer.	Use a number line to count on in ones or in one jump to find the answer. Starting at the larger number on the number line. $12+5=17$	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer. Counting on using twos. The abstract number line: What is 2 more than 4? What is the sum of 2 and 4 ? What is the total of 4 and 2 ? $4+2$

| Regrouping to |
| :--- | :--- | :--- | :--- |
| make 10 |

Objective and Strategy	Concrete	Pictorial	Abstract
Adding multiples of ten.	Using numicon to represent 10. $\begin{aligned} & 60=10+10+ \\ & 10+10+10+ \\ & 10 \end{aligned}$ Model using dienes and bead strings	$\begin{gathered} 3 \text { tene }+5 \operatorname{ten} s= \\ 30+60= \end{gathered}$ Use representations for base ten.	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$
Use known number facts. Part part whole	Children explore ways of making numbers within 20.		\square $+1=16$ $16-1=$ \square $1+$ \square $=16$ 16 - \square $=1$

Using known facts.
Children explore ways of using known facts.

Add a twodigit number and ones.	Continue to develop understanding of partitioning and place value. $17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	Using dienes, part whole and number lines to model.	$18+6=$ Explore related $\begin{aligned} & 6+\square=24 \\ & 24-6=\square \\ & \square-18=6 \end{aligned}$	$18+{\underset{2}{/}}_{6}^{4}$ facts:
Add a twodigit number and tens.	$25+10=35$ Explore that the ones digit does not change	Using the dienes frames: We had three tens and two ones. Ten more gives us four tens and two ones.' Using number squares to 100 : 'Ten more than forty-two is fifty-two'.		

		Using number lines:		
Add two 2digit numbers	$\\|$ Model using dienes, place value counters and numicon	Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 40+20=60 \\ 5+3=8 \\ 60+8=68 \end{gathered}$	
Adding 3 single digit numbers.	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Combine to make 10 first if possible, or bridge 10 then add third digit	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$: 8$	

Addition				Year 2
To begin with column addition - no grouping then beginning to group ones and tens.	Tens Ones 0 0 Use place value counters and ienes to provide support.	Using a bar model to represent the calculation.	Expanded method: $\begin{array}{r} 19 \\ +13 \\ \hline 12 \\ +20 \\ \hline 32 \\ \text { with renaming: } \\ 19 \\ +13 \\ \hline 19 \end{array}$	Wrmow remenng. $+\quad 18$ 29

Objective and	Concrete	Pictorial	Abstract
Y4 - add numbers with up to 4 digits	 Children continue to use dienes or pv counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand.	Children can draw a pictorial representation of the columns and place value counters to further support their learning and understanding.	Continue from revious work to carry hundreds as well as tens. Relate to money and measures.
Y5 - add numbers with more than 4 digits. Add decimals with 2 decimal places, including money.			$\begin{array}{llll} \hline \hline 72.8 & & & \\ +54.6 \\ \hline \frac{127.4}{} & & & \\ 111 & € 23 & 59 \\ & & \text { € € 7. } & 55 \\ \hline & € 3 & \cdot & 14 \\ \hline & & & \end{array}$

Y6 - add several numbers of increasing complexity. Including adding money, measure and decimals with different numbers of decimal points.	AS Y5	As Y5	$\begin{array}{r} 81,059 \\ 3,668 \\ 15,301 \\ +20,551 \\ \hline 20,579 \\ 1111 \end{array}$ Insert zeros for place holders.	$\begin{array}{r} 23 \cdot 361 \\ 9 \cdot 080 \\ 59 \cdot 770 \\ +\quad 1 \cdot 300 \\ \hline 93 \cdot 511 \\ 21.2 \end{array}$

Objective and Strategy	Concrete	Pictorial	Abstract
Taking away ones.		Children to draw the concrete resources they are using and cross out the correct amount. The bar model can be used. 3 take away 2 is 1	$10-1=$ $5-1=$ \square $9-1=$ \square $4-1=$ \square $8-1=$ \square $3-1=$ \square $7-1=$ \square $2-1=$ \square $6-1=$ \square $1-1=$ \square 4-3 = $[-3=4-3$ \square
Counting back.	Using number lines or tracks. Make the large number. Move the beads along the bead string as you count backwards in ones.	Count back in ones using a number line to represent what they see pictorially.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

Find the difference	What's the difference between 10 and 6 ? The difference between 10 and 6 is __ $10-6=$ Compare amounts and objects to find the difference.	Draw the cubes or other resources used or use the bar model to illustrate what they need to calculate. Count on using a number line to find the difference.	Find the difference between 8 and 5 . $8-5$, the difference is \square Children to explore why 9-6 = 7-4 have the same difference. Hannah has 23 sandwiches; Helen has 15 sandwiches. Find the difference between the number of sandwiches

Represent and use number bonds and related subtraction facts within 20. Part Part Whole model	Link to addition - use the part whole model to help explain the inverse between addition and subtraction, If 10 is the whole and 6 id one of the parts. What is the other part? $10-6=\square$	Use a pictorial representation of objects to show the part - part - whole model. Any objects can be used for this.	Move to using numbers within the part-partwhole model.
Make 10	12-5 Make 12 on the ten frame. Take 2 away to make ten, then take 3 more away to make 7 .	Children represent the ten frame pictorially and discuss what they did to make 10. Use number lines. Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken 7 altogether. You have reached your answer. $13-7=6$	Children to demonstrate how they can make 10 by partitioning the subtrahend. 10 - \square 3 7 16-7 How many do we take off first to get to 10 ? How many left to take off?

| Bar Model | | | |
| :--- | :--- | :--- | :--- | :--- |

Objective and Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$20-4=$	$20-4=16$
Partitioning to subtract without regrouping 'friendly numbers'	78 minus $34=$ \qquad 8 ones -4 ones $=$ \qquad 7 tens -3 tens $=$ \qquad We have \qquad tens and \qquad ones. Use Dienes to show how to partition the number when subtracting without regrouping.	Part-part-whole diagram: 59-27 Using number lines and partpart whole model 59-27 = \qquad Children draw representations of Dienes and cross off. \square $43-21=22$	$59-27=32$

Make ten strategy	Use Dienes to model 72-2-20-4=46 Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to next ten and then the rest.	$93-76=17$
Beginning to use the column method to subtract	Use place value counters and Dienes to provide support.	To subtract twenty-three, we can subtract twenty and then subtract three.'	

Objective and Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones. Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money.	$443-218=225$ Model the process of exchanging using numicon, base ten and place value counters.	Draw the counters onto a place value grid and show what you have subtracted by crossing out the counters, as well as clearly showing the exchanges you make.	$\begin{aligned} & 3271-1691= \\ & 2 \neq 21271 \\ & -1691 \\ & \hline 1580 \\ & \hline \end{aligned}$ Use the phrase 'take and make' for exchange.
Year 5subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal.	$4,648-2,347$ Follow through with Year 4, using base 10, numicon and place value counters. 4.54-1.4	Continue to draw the counters onto a place value grid and show what you have subtracted by crossing out the counters, as well as clearly showing the exchanges you make.	

Year 6- subtract with increasingly large and more complex numbers and decimal values	Continue to use place value counters, numicon, base ten where appropriate.		

Making equal groups and counting the total		' Complete the sentences 	$2 \times 6=12$
Repeated addition			Write addition sentences to describe objects and pictures
Understanding arrays		Children to draw 00000 the arrays pictorially.	Using arrays to write multiplication sentences. $\begin{aligned} & 5+5=10 \\ & 2+2+2+2+2=10 \\ & 2 \times 5=10 \\ & 5 \times 2=10 \end{aligned}$

Objective and Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using Dienes and place value counters.	Draw pictures and representations to show how to double numbers.	Partition a number and then double each part before recombining it back together. There are thirteen pairs of socks. How many socks are there altogether?
Counting in multiples of 2, $3,4,5,10$ from 0. (repeated addition)	Count the groups as children are counting, children may use their fingers as they are skip counting. Use a range of resources to demonstrate this.		Counting in multiples of a number aloud. Write in sequences with multiples of numbers. $3 \times 4=$ \square

\begin{tabular}{|c|c|c|c|c|}
\hline Multiplication is commutative \& \begin{tabular}{l}
3 lots of 4 \\
4 lots of 3 \\
Children to create arrays using a range of equipment: counters, cubes and Numicon. \\
\(3 \times 4=\) \\
Pupils should understand that an can represent different equations and that, as multiplication is commutative, the order of multiplication does not affect the answer.
\end{tabular} \& \[
\begin{aligned}
\& 00 \\
\& 00 \\
\& 00 \\
\& 00 \\
\& 00
\end{aligned}
\] \& \begin{tabular}{l}
Children to represent the arrays pictorially. \\
Make sure the arrays are drawn in different orientations to find the commutativity.
\end{tabular} \& \begin{tabular}{l}
000 \\
Children to be able to use
an array to write multiplication sentences

and calculations

$$
\begin{aligned}
& 3+3+3+3=12 \\
& 4+4+4=12 \\
& 4 \times 3=12 \\
& 3 \times 4=12
\end{aligned}
$$

\end{tabular}

\hline | Using the inverse |
| :--- |
| This should be taught alongside division, so pupils learn how they work alongside each other. | \& \& \& | $\begin{aligned} &] \times \square=\square \\ &] \times \square=\square \\ &] \div \square=\square \\ &] \div \square=\square \end{aligned}$ |
| :--- |
| le diagrams to make division sentences. | \& | Children to come up with 8 related fact family sentences. |
| :--- |
| $\mathbf{3 \times 1 0} \mathbf{= 3 0}$ |
| $10 \times 3=30$ |
| $30=10 \times 3$ |
| $30=3 \times 10$ |
| $30 \div 3=10$ |
| $30 \div 10=3$ |
| $10=30 \div 3$ $3=30 \div 10$ |

\hline
\end{tabular}

Objective and Strategy	Concrete	Pictorial	Abstract
Grid method	Show the link with arrays to first introduce the grid method. 4 rows of 10 4 rows of 3 Move on to using Base 10 to move towards a more compacy method. Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows. Add up each column starting with the ones making any exchanges needed. Then you have your answer.	Children can represent the work they have done with place value counters in a way that they understand. They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking. Bar models are used to explore missing numbers $4 \times \square=20$	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $210+35=245$

Objective and Strategy	Concrete		Pictorial	Abstract		
Grid method recap from year 1 for 2 digits x 1 digit. Move to multiplying 3 digit numbers by 1 digit (Year 4 expectation)	Place-value counter representation of 521×3 : Step 1-partition 521: $\begin{aligned} & 521=500+20+1 \\ & 521=5 \text { hundreds }+2 \text { tens }+1 \text { one } \end{aligned}$ Steps 2 and 3- gather three sets of 521, multiply the hundreds, tens and ones and recombine: $\begin{aligned} & 5 \text { hundreds } \times 3=15 \text { hundreds } \\ & 2 \text { tens } \times 3=6 \text { tens } \\ & 1 \text { one } \times 3=3 \text { ones } \\ & \begin{aligned} 521 \times 3 & =500 \times 3+20 \times 3+1 \times 3 \\ & =1500+60+1 \end{aligned} \end{aligned}$ Step 4-regroup the hundreds into thousands and hundreds 15 hundreds $=1$ thousand +5 hundreds $\begin{aligned} 521 \times 3 & =1000+500+60+3 \\ & =1563 \end{aligned}$	Use place value counters or Dienes to introduce the grid method.	Children can represent the work they have done with place value counters in a way that they understand. They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking.	Start with multiplying by one digit numbers and showing the clear addition alongside the grid.$210+35=245$		

Objective and Strategy	Concrete		Pictorial	Abstract		
Grid method recap from year 1 for 2 digits x 1 digit. Move to multiplying 3 digit numbers by 1 digit (Year 4 expectation)	Place-value counter representation of 521×3 : Step 1-partition 521: $521=500+20+1$ $521=5$ hundreds +2 tens +1 one Steps 2 and 3 - gather three sets of 521 , multiply the hundreds, tens and ones and recombine: $\begin{aligned} & 5 \text { hundreds } \times 3=15 \text { hundreds } \\ & 2 \text { tens } \times 3=6 \text { tens } \\ & 1 \text { one } \times 3=3 \text { ones } \\ & \begin{aligned} 521 \times 3 & =500 \times 3+20 \times 3+1 \times 3 \\ & =1500+60+1 \end{aligned} \end{aligned}$ Step 4-regroup the hundreds into thousands and hundreds 15 hundreds $=1$ thousand +5 hundreds $\begin{aligned} 521 \times 3 & =1000+500+60+3 \\ & =1563 \end{aligned}$	Use place value counters or Dienes to introduce the grid method.	Children can represent the work they have done with place value counters in a way that they understand. They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking.	Start with multiplying by one digit numbers and showing the clear addition alongside the grid.$210+35=245$		

Objective and Strategy	Concrete	Pictorial				Abstract		
Column multiplication for 3 and 4 digits	Children can continue to be supported by place value counters at the stage of multiplication. This is initially done where there is no regrouping. It is important at this stage that the children multiply the ones first. The corresponding long multiplication alongside of it.	The g meth	$\begin{aligned} & \text { method } r \\ & \hline \frac{300}{1200} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { f be used } \\ & \hline 20 \\ & \hline 80 \end{aligned}$	show how this relates to formal written $\begin{array}{\|l\|} \hline 7 \\ \hline 28 \\ \hline \end{array}$	$\begin{array}{r} 1144 \times 8= \\ \begin{array}{r} 1144 \\ \times \quad 8 \end{array} \\ \begin{array}{r} 32 \end{array} \\ 320 \rightarrow m \\ 800 \rightarrow m \\ +8000 \rightarrow m 4 \\ \hline 9152 \end{array}$	\begin{tabular}{l\|l	l
\hline								
\end{tabular} litiply by	ones tens hundreds thousands s will lead to a mpact method.							
Column multiplication	Manipulatives may stil be used with the corresponding long multiplication modelled alongside.		$\begin{aligned} & 80+30 \\ & \hline 10 \\ & 100 \\ & 30 \\ & \hline \end{aligned}$	$\begin{gathered} 4=23 \\ 8 \\ 80 \\ 24 \\ \hline \end{gathered}$	Introduce long multiplication alongside grid method to show the relationship between the answers in each row.			18×3 on the first row. ($8 \times 3=24$, carrying the 2 for 20, then 1×3) 18×10 on the $2^{\text {nd }}$ row. Show multiplying by 10 by putting the zero units in first.

Objective and Strategy	Concrete	Pictorial	Abstract
Multiplying decimals up to 2 decimal places by a single digit.	Use place value counters where appropriate if necessary.		Remind children that the single digit belongs in the unit's column. Line up the decimal points in the question and the answer.
			$3 \cdot 19$
			+8
			$25 \cdot 52$
			$\begin{aligned} & 2.19 \\ & \times 18 \cdot 52(8 \times 2.19 \\ & \frac{17 \cdot 50}{21 \cdot 90} 10 \times 2.19 \\ & \frac{39 \cdot 42}{39} \end{aligned}$

Objective and Strategy	Concrete	Pictorial	Abstract
Division as sharing	Use a range of equipment to introduce sharing. Can you share 6 into two groups? I have 10 cubes, can you share them equally in 2 groups?	Sharing objects pictorially 12 children get into teams of 4 to play a game. How many teams are there? 6 sweets are shared between 2 people. How many do they each have?	Share 9 buns between three people. $9 \div 3=3$

Objective and Strategy	Concrete	Pictorial	Abstract
Divide at least 3 digit numbers by 1 digit. Short division.	 Use place value counters to divide using the bus stop method alongside. Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14.	Children can continue to draw diagrams with dots or circle and circle to help them to divide into equal groups. Encourage children to move towards counting multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder. Move onto division with a remainder. Finally move into decimal places to divide the total accurately. $\frac{0663}{8 \longdiv { 5 ^ { 5 } 3 ^ { 5 } 0 ^ { 2 } 9 }}$

35	1	14	. 6
		16	21
	51	11	. 0
			$\begin{array}{lll} h & 1 \\ 0 & 4 & 1 \end{array}$
			$4 \longdiv { 1 6 5 }$

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1.

> | thhto |
| :--- |
| $0 \longdiv { 0 4 0 0 R 7 }$ |
| 3207 |

hto
061
$4 \longdiv { 2 4 7 }$
$\frac{-4}{3}$
When dividing the ones, 4 goes into 7 one time Multiply $1 \times 4=4$, write that four under the 7 , and subract This finds us the remainder of 3 .

Check: $4 \times 61+3=247$
th hto
0402

4 | 1609 |
| ---: |
| 1 |

When dividing the ones, 4 goes into 9 two tmes. Muitply $2 \times 4=8$ write that eight under the 9 , and subract This finds us the remainder of 1

Check: $4 \times 402+1=1,609$

8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times ($3,200+8=400$)
8 goes into 0 zero times (tens)
8 goes into 7 zero times, and leaves a remainder of 7

Long division	Step 2 - a remainder in the tens.		
	1. Divide	2. Multiply and Subtract	3. Drop down the next digit.
	$2 \longdiv { 1 0 } \quad \begin{array} { r } { 2 } \\ { 2 5 8 } \end{array}$ Two goes into 5 two times, or 5 tens $-2=2$ whole tens - but there is a remainder!	$2 \longdiv { \frac { 2 } { 5 8 } }$ To findili, multply $2 \times 2=4$, write that 4 under the five, and subtract lo find the remainder of 1 ten	$\begin{array}{r} 10 \\ 2 \longdiv { 2 9 } \\ \frac{-4}{18} \end{array}$ Next, drop down the θ of the ones next to the leflover 1 ten. You combine the remainder ten with 8 . ones, and get 18
	1. Divide	2. Multiply and Subtract	3. Drop down the next digit.
	$\begin{array}{r} 10 \\ 29 \\ 2 \longdiv { 5 8 } \\ -4 \end{array}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{array}{r} 29 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{18} \\ -18 \\ \hline 0 \end{array}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract.	$\begin{array}{r} 10 \\ 2 \longdiv { 2 8 } \\ \frac{-4}{18} \\ -18 \\ \hline 0 \end{array}$ The division is over since there are no more digits in the dividend. The quotient is 29

